منابع مشابه
Exact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملNonlinear Impulsive Evolution Equations
We study the existence and uniqueness of mild and classical solutions for a nonlinear impulsive evolution equation u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t = ti, u(0) = u0, ∆u(ti) = Ii(u(ti)), i = 1, 2, ..., 0 < t1 < t2 < ... < T0, in a Banach space X, where A is the generator of a strongly continuous semigroup, ∆u(ti) = u(t+i ) − u(ti ), and Ii’s are some operators. The impulsive conditions c...
متن کاملNonlinear Evolution Equations
Nonlinear evolution equations are studied under various conditions. The methods used are based on the theory of difference equations. The results presented here are illustrated with examples.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولNonsmooth Analysis of Doubly Nonlinear Evolution Equations
In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional, for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1971
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1971.39.293